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Abstract - A/B testing is critical for big retail giants to adapt to rapidly changing consumer preferences and maintain market 

leadership. In a situation where the test group is predetermined, effective A/B testing requires selecting control stores that are 

comparable to test stores, a challenge addressed in this paper. The focus of this study is on the methodology for selecting 

homogeneous experimental units in physical retail settings evaluating them through a time series of key performance indicators. 

The methodology demonstrates adaptability to multiple KPIs, enhancing its applicability. Two methods for control store 

selection are introduced and compared: a statistical sampling technique and an optimization approach, with findings indicating 

the superiority of the optimization method for achieving more accurate and reliable A/B testing results. This research offers 

significant insights for retailers aiming to optimize their in-store strategies and improve overall business strategies and 

performance, making it essential for retail decision-makers seeking to optimize operational efficiency. 

Keywords - A/B testing, Controlled experiments, Experimental Design, Optimization, Population Sampling, Optimization.  

1. Introduction  
Big retail giants navigate through rapidly changing 

consumer behaviours and preferences to stay ahead of the 

competition. They employ A/B testing, an experiment where 

two or more variants of a business scenario are randomly 

offered to users. This approach allows retailers to experiment 

with product placements, pricing strategies and promotional 

activities, and measure the impact of the experiments on 

business Key Performance Indicators (KPIs). In A/B testing, 

the experimental results are statistically analysed to determine 

which variant performs better for a given objective. 

The basic requirement for conducting such experiments is 

to ensure homogeneity among the groups on which different 

variants are tested. Homogeneity is typically assessed with 

respect to KPIs, measurable attributes that businesses aim to 

influence through their promotional activities. Statistically 

designed experiments deploy randomization to mitigate the 

adverse effects of experimental units that are supposedly 

homogeneous [8].  

Businesses often face strategic requirements that 

necessitate selecting a pre-established group of stores for the 

test group due to the need for a controlled environment, 

strategic importance, or accurate market representation. In this 

process, the consideration of experimental units for the control 

group is often ignored. Identification of control units for such 

situations post-experimentation is something that has not been 

addressed in the literature. 

This article considers the problem of identifying a control 

group that is homogeneous with the test group with respect to 

a multi-dimensional KPI. Two approaches are proposed for 

this problem. The proposed solution can be extended to similar 

problems. For example, this methodology can be used in 

identifying homogeneous customers/users based on multi-

dimensional feature vectors involving components such as 

location, demography, behavioral traits, etc. 

2. Problem 
The basic requirement for conducting experiments such 

as A/B testing is to ensure the availability of homogeneous 

experimental units. Homogeneity can be measured in terms of 

one or more variables (KPIs), or it could involve a multi-

dimensional variable, a KPI vector. For a detailed 

understanding of vector concepts in this context, see 

‘Elementary Linear Algebra’ [1]. For the problem addressed 

in this paper, homogeneity is measured through a KPI vector. 

Given a pre-specified test group in advance, presumably 

comprising homogeneous experimental units, the objective is 

to choose units to represent a control group mirroring the 

characteristics of the test group. In other words, the goal is to 

select a subset of control units of the size of the test group so 

that the experimental units, together with test units, are 

homogeneous with respect to the KPI vector. For the problem 

addressed, experimental units are stores, KPI is the average 

weekly sales, and the KPI vector is the time series of the 

weekly average sales of a store for 51 contiguous weeks of a 

year prior to A/B testing. For further details on the 

methodology involving time series analysis, refer to [10]. Two 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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distinct approaches are explored: a statistical method and an 

optimization method. The optimization methods include linear 

programming [11] and operations research techniques 

involving both linear and nonlinear optimization [13]. These 

methods are evaluated for their effectiveness in selecting an 

appropriate control group, thus ensuring the reliability of our 

A/B testing results. Section 4 presents and compares these 

approaches, shedding light on their respective advantages and 

limitations in the context of retail A/B testing and thereby 

contributing to the nuanced understanding of methodological 

selection in controlled experimental designs.  

 

3. Related Work  
The literature on Controlled Experimentation (CE) 

highlights several key studies. Hokka [4] addresses the 

challenges in the retail industry, emphasizing the necessity for 

CE to understand the causal effects of business decisions. The 

study outlines a framework for implementing CE effectively 

in retail contexts. In a similar vein, Kalyanam [5] explores the 

impact of search engine advertising on brick-and-mortar retail 

sales through a meta-analysis of 15 field experiments. The 

findings illustrate a positive influence of search engine 

advertising and underscore the interconnection between 

online and offline markets, suggesting that offline effects 

should be considered in search advertising campaigns. Kohavi 

[6] details how companies like Bing leverage CE to guide 

product development and enhance innovation. The paper 

discusses the challenges involved in scaling experiments, 

including aspects related to culture, organization, engineering, 

and trustworthiness. It describes a scalable system to manage 

multiple concurrent CEs and massive data sets. Koning [7] 

focuses on the adoption of A/B testing technology by start-

ups, illustrating how it facilitates organizational learning and 

data-driven decision-making, which can lead to quicker 

scaling or determination of business viability. Additionally, 

Xu [15] discusses LinkedIn’s experimentation platform, 

XLNT, which oversees A/B testing from design to analysis, 

addressing large-scale A/B testing challenges in social 

networks, such as conducting offline experiments and 

managing network effects. The study emphasizes the 

integration of A/B testing into the decision-making process 

and its alignment with business reporting for impactful results. 

Quin [12] conducted an extensive systematic literature review 

analysing 141 primary studies on A/B testing, focusing on 

design, execution, stakeholder roles, and key challenges. The 

review identified algorithms, visual elements, and 

workflow/processes as the main targets of A/B testing. It 

highlighted three principal roles in A/B test design: concept 

designer, experiment architect, and setup technician. 

Additionally, it suggested enhancing statistical methods, 

improving A/B testing processes, and automating A/B testing 

as areas for future research. Despite the comprehensive 

coverage, none of the studies mentioned above address the 

critical issue of identifying an appropriate control group given 

a test group within the context of CE. 

The literature on population sampling primarily focuses 

on probabilistic and non-probabilistic methods, highlighting 

the advantages of the former due to its representativeness and 

ability to minimize bias. Banerjee [2] emphasizes the 

importance of selecting a representative sample from a target 

population, outlining various strategies such as random, 

systematic, stratified, and cluster sampling, each with its 

applications and limitations. Etikan [3] contrasts probability 

random sampling with non-probability sampling methods, 

such as quota and accidental sampling, stressing that 

probability sampling is preferable for generating unbiased 

data across the entire population. In contrast, non-probability 

methods can introduce assumptions and risks. Lohr [8] serves 

as a comprehensive guide to designing and analysing survey 

statistics, which is valuable for those interested in survey 

sampling methods. Taherdoost [14] discusses the necessity of 

sampling in research and outlines both probability and non-

probability sampling techniques, providing formulas and 

considerations for determining the appropriate sample size. 

The paper details the steps involved in conducting sampling, 

from defining the target population to assessing the response 

rate. However, in the specific context of retail A/B testing for 

evaluating promotional strategy effectiveness, a more targeted 

selection process is required for control stores given test stores 

to ensure a comparable testing environment, which deviates 

from traditional probability sampling methods. 

The existing literature comprehensively explores various 

facets of controlled experimentation and population sampling. 

However, a significant gap remains in the identification of 

appropriate control groups given test groups in the context of 

controlled experiments, particularly in retail settings. This 

paper aims to bridge this gap by proposing a novel 

methodology for selecting control groups that ensure the 

reliability and validity of experimental outcomes. By 

addressing this gap, the paper contributes significantly to the 

body of knowledge, providing a robust framework that can 

enhance the precision and effectiveness of controlled 

experiments in the retail industry and beyond. 

3.1. Contributions 

This paper introduces a novel methodology that selects a 

homogeneous control group matching the test group based on 

a multi-dimensional KPI. 
 

4. Data Collection and Preprocessing 
In the context of A/B testing, data collection serves as the 

foundation for comparing the performance of different 

variables to drive data-informed business decisions.  

 

In this methodology, data must be meticulously gathered 

not only from the test stores but also from the entire network 

of eligible stores to identify potential control group 

candidates, ensuring a valid and comprehensive comparison. 

For this paper, simulated sales data are used to illustrate the 

process. 
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KPIs, typically defined by business objectives such as 

increasing sales, margins, or volume, are pivotal in aligning 

the test and control stores. These KPIs form the basis for 

evaluating store homogeneity and are crucial for the 

experimental design. Given the inherent variability in sales 

data, the granularity of data aggregation is essential; weekly 

aggregation is chosen here to strike a balance between 

reducing variability and maintaining meaningful insights, a 

decision guided by exploratory data analysis and the nature of 

the business’s data inflow. 

 

The data structure for this analysis includes four critical 

columns: store ID, test/control group label, date, and KPI 

(average weekly sales). The test/control label is particularly 

important for differentiating between the groups during the 

analytical phase. To quantify the similarity between stores, 𝑙1 

and 𝑙2 distances between their time-series sales data are used, 

aiming for minimal distances to establish homogeneity. 

Addressing potential biases and anomalies is a preliminary 

step in the data collection process. Scrutinizing the data for 

irregularities, such as zero or negative sales figures, ensures 

that only representative and reliable data are used for further 

analysis. This careful approach helps in creating a robust 

methodological framework for selecting homogenous control 

stores in retail A/B testing scenarios. 

 
Table 1. Sample data format for the problem 

Store ID Test_Con-

trol_Flag 

Date Sales 

3496586 Pot. CTRL 9/17/2017 $ 120.30 

3496587 Pot. CTRL 7/1/2018 $ 1,431.48 

3496589 TEST 7/8/2018 $ 15,312 

 

5. Methodology 
Considering the broader applicability of the methodology 

to the selection of user groups, the following terminology will 

be used henceforth: 'test group,' 'control group,' and 'potential 

control’. This terminology is applicable across various 

settings, including retail environments, online platforms, or 

any experimental context. A unit of a ‘group’ can be a store, a 

user, or any other subject. A ’test group’ is where specific 

changes or interventions are applied to the units of the group 

to assess the impact of the changes on a KPI. A ‘control group’ 

refers to a group of units that are similar to the test group and 

where changes are not implemented. It is important to note 

that business typically should dictate the timeframe prior to 

the start of the A/B test and in the predetermined timeframe, 

the performance of test and control groups should be similar 

with respect to the KPI. If changes in the KPI occur after the 

A/B testing period, attributing these changes to the 

promotional activities in the test group with statistical 

significance can be considered. The problem of selecting an 

appropriate control group arises in the absence of a pre-

specified control group. A ‘potential control’ is any unit that 

is eligible to be considered as a unit of the control group. 

Potential control units are those on which the changes under 

the A/B testing are not implemented. 

 

The criteria for selecting units for the control group 

should ensure the homogeneity between the test and control 

groups. Statistically, homogeneity is defined as the condition 

where all units in both test and control groups have the same 

distribution for the KPI. Given that this is too rigid a condition 

for practical applications, it is often common practice to relax 

the criteria to the following. Both groups should have the same 

expectations and dispersion. Since the research deals with a 

multi-dimensional KPI, the expectation becomes a mean 

vector, and the dispersion becomes a covariance matrix. To 

reduce complexity, the homogeneity requirement is further 

relaxed to ensure that the test and control vectors share the 

same mean vectors. 

 
5.1. Mathematical Formulation 

The problem is framed as follows: given a pre-specified 

test group of size 𝑝 over 𝑚 contiguous weeks, let 𝑇𝑖𝑗  be the 

KPI value of the 𝑖𝑡ℎ test unit for the 𝑗𝑡ℎ week, 𝑖 = 1,2, … , 𝑝 

and 𝑗 = 1,2, … . , 𝑚. 𝑇𝑖 = (𝑇𝑖1 , 𝑇𝑖2, … . , 𝑇𝑖𝑚) is an 𝑚-

dimensional random vector. Let 𝑛 be the number of potential 

units eligible for possible selection into a control group. Let g 

be a control group of size 𝑝 selected from the 𝑛 potential units. 

Let 𝑆𝑖𝑗
𝑔

 be the KPI value of the 𝑖𝑡ℎ unit of 𝑔 for the 𝑗𝑡ℎ week, 

𝑖 = 1,2, … , 𝑝 and , 𝑗 = 1,2, … , 𝑚. Then, 𝑆𝑖𝑔 =

(𝑆𝑖1
𝑔

, 𝑆𝑖2
𝑔

, … , 𝑆𝑖𝑚
𝑔

) is an 𝑚-dimensional random vector. 

Statistically, control and test units are homogenous, provided 

the random vectors. 𝑇𝑖 and 𝑆𝑖𝑔 Have the same distribution for 

all 𝑖. Let 𝜇𝑇𝑖 = 𝐸(𝑇𝑖) and Σ𝑇𝑖 = 𝑐𝑜𝑣(𝑇𝑖) denote the 

expectation and dispersion matrix of 𝑇𝑖 Respectively. 

Assuming that test units are homogeneous, 𝐸(𝑇𝑖) =  𝜇𝑇 and 

𝑐𝑜𝑣(𝑇𝑖) =  Σ𝑇 For all 𝑖 within the test group. Similarly, 

assuming control units within 𝑔 are homogenous among 

themselves, 𝐸(𝑆𝑖𝑔) =  𝜇𝑆 and 𝑐𝑜𝑣(𝑆𝑖𝑔) =  Σ𝑆𝑔  For all 𝑖 
within 𝑔. As a first-order relaxation of homogeneity, consider 

the test and control group 𝑔 are homogeneous, provided 𝜇𝑇 =
 𝜇𝑆𝑔

 and Σ𝑇 =  Σ𝑆𝑔
.  

As a second-order relaxation of homogeneity, consider 

the test and control group 𝑔 are homogeneous, provided 𝜇𝑇 =
 𝜇𝑆𝑔

. The problem considered in this article is to pick a 𝑔 that 

is second-order homogeneous. Note that �̂�𝑇 =  
1

𝑝
∑ 𝑇𝑖𝑝

𝑖=1  and 

�̂�𝑆𝑔 =  
1

𝑝
∑ 𝑆𝑖𝑔

𝑖𝜖𝑔  are unbiased estimators of 𝜇𝑇 and 𝜇𝑆𝑔 

respectively. Therefore, the goal is to pick a 𝑔 so that. �̂�𝑆𝑔 is 

close to �̂�𝑇. This alignment is quantified using vector distance 

measures, such as the Euclidean distance (𝑙2-norm) or the 

absolute distance (𝑙1-norm) (for distance measures and norms, 

see  https://en.wikipedia.org/wiki/Norm_(mathematics)). The 

selection involves 𝑛 potential units, of which 𝑝 are to be 

picked. 
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Considering the selection process, the number of possible 

combinations is 𝑁 =  (𝑛
𝑝

), where 𝑁 represents the total 

number of groups that can be formed. Each group can be 

uniquely represented by a binary vector 𝑎 = (𝑔1, 𝑔2, … , 𝑔𝑛) 

where 𝑔𝑗 = 1 indicates the inclusion of unit 𝑗 in the group, and 

𝑔𝑗 = 0 otherwise. For each potential group 𝑔, the distance 

𝑑(𝑔) can be calculated as the distance between �̂�𝑆𝑔 and �̂�𝑇. 

The objective is to pick a group 𝑔 for which 𝑑(𝑔) is the 

minimum over all possible 𝑁 control groups. The challenge 

lies in finding the vector g that minimizes d(g). This 

optimization problem is tackled using two different 

methodologies: a statistical approach and an optimization 

approach, both of which are explored and compared in this 

study. 

5.2. Statistical Approach 

The statistical approach treats the problem as follows:  

select a group 𝑔 from the population of 𝑁 possible groups with 

equal probability. Let 𝐷 be the random variable representing 

the distance of a randomly selected group 𝑔. Since 𝑁 is large, 

𝐷 may be treated to be a continuous random variable. The 

distribution of 𝐷 is assessed through a sample of size 𝑘. 

Suppose 𝐹 is the cumulative distribution function of 𝐷. If 

𝑑0  =  𝑑(𝑔0) is the minimum distance observed in the sample, 

then 𝑑0 represents the 𝛼-percentile of 𝐷, where 𝛼 = 𝐹(𝑑0) =
𝑃(𝐷 ≤ 𝑑0). Consequently, 𝑔0 is a 100(1 − 𝛼)% optimal 

solution to the problem, indicating that approximately 100𝛼% 

of 𝑔 selections are better than 𝑔0. This method is particularly 

effective if 𝐹 exhibits a negatively skewed distribution.  

 
Fig. 1 Sample distributions of 𝒍𝟐 and 𝒍𝟏 distances based on 5000 samples 

 

Consider an example where 𝑚 = 51, 𝑛 = 592, and 𝑝 =
100, using a sample size 𝑘 = 5000. Two distance measures 

are evaluated - the 𝑙2-norm and the 𝑙1-norm for 𝑘 groups (𝑔𝑠)  

randomly selected. For each group 𝑔 so selected, �̂�𝑆𝑔 and 

𝑑(𝑔) are computed. For a simulated data set, the histograms 

of 𝐷 under these two measures reveal distinct contributions in 

Figure 1. Their basic statistics are also provided for analysis. 

In the case of the 𝑙1-norm, a probability plot suggests that a 3-

parameter log-normal distribution closely represents the 

sample data, with parameters indicating location, scale, and 

threshold (the probability plot is shown in Figure 2). However, 

the minimum 𝑙1 distance observed in the 5000 samples is 

7441, which is significantly higher than the estimated 

threshold of 3508 obtained from the 𝑙1 distance’s probability 

plot. This discrepancy indicates that a much larger sample size 

is needed to identify a group that closely matches the test 

group. 

 

 
Fig. 2  3-parameter log-normal for 𝒍𝟏 distance 

 

5.3. Optimization Approach 

In the optimization approach, the problem is formulated 

mathematically, aiming to find a binary vector 𝑔 with exactly 

𝑝 ones such that 𝑑(𝑔) is minimized. Two formulations are 

presented, one for the 𝑙2-norm and the other for the 𝑙1-norm. 

For brevity of the presentation, the following notation is 

introduced. Let 𝑦 be the transpose of �̂�𝑇. Let 𝑋 be the 𝑚 ×  𝑛 

matrix whose. 𝑖𝑡ℎ column is the transpose of the KPI vector of 

the 𝑖𝑡ℎ potential control unit multiplied by the constant 
1

𝑝
.  

Then 𝑦 − 𝑋𝑔 =  �̂�𝑇 −  �̂�𝑆𝑔. 

 

Using 𝑙1-norm: The problem is cast as a binary integer 

linear programming problem. Introducing two new 

nonnegative variable vectors 𝑞 and 𝑟 of order 𝑚 ×  1 

facilitates this formulation. For any 𝑔, the difference 𝑦 –  𝑋𝑔 

may have positive, negative, or zero elements. Thus, 

𝑦 –  𝑋𝑔 =  𝑞 –  𝑟, where 𝑞𝑖 = max (𝑦𝑖 −  𝑢𝑖, 0) and 𝑟𝑖 =
max (𝑢𝑖 −  𝑦𝑖 , 0), with 𝑢 =  𝑋𝑔. The 𝑙1-norm of y – u is equal 

to ∑ (𝑞𝑖 + 𝑟𝑖)𝑚
𝑖=1 . Consequently, the optimization problem is 

formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑(𝑞𝑖 + 𝑟𝑖)

𝑚

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑞 − 𝑟 + 𝑋𝑔 = 𝑦, 

∑ 𝑔𝑖 = 𝑝,

𝑚

𝑖=1

 

     𝑞 ≥ 0, 𝑟 ≥ 0, 
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                𝑔𝑖 ∈ {0,1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖.  

Using 𝑙2-norm: Here, the objective function is (𝑦 −
 𝑢) (𝑦 −  𝑢)𝑇, which forms a quadratic function in 𝑔, given 

𝑢 =  𝑋𝑔. This results in a mixed integer non-linear 

programming problem.  

6. Experimental Results 
Using 𝑙1-norm: This problem was solved using a 

commercial Operations Research (OR) solver, yielding a 

feasible solution 𝑔 with 𝑑(𝑔) = 833 in 40 seconds, with no 

significant reduction in the objective value after 7 minutes of 

processing. The final solution had a distance of 827, a 

substantial improvement compared to the minimum distance 

of 7441 obtained through the sampling approach.  

Using 𝑙2-norm: The mixed integer non-linear 

programming problem proved computationally intensive, with 

no feasible solution found within 15 minutes of processing. 

However, for the 𝑙1-norm solution, the corresponding 𝑙2 the 

distance can be computed. For example, for g with an 𝑙1 

distance of 833, the 𝑙2 distance is found to be 160.  

This demonstrates the efficiency of the optimization 

approach compared to the statistical method. Upon identifying 

a group similar to the target group, to find another comparable 

group, the process involves excluding the units identified in 

the first solution and selecting a new group from the remaining 

units. 

6.1. Limitations of this Methodology 

6.1.1. Generalization of Results 

One possible concern is whether the findings from the 

selected control and test scores can be generalized to other 

stores or the entire retail chain. 

6.1.2. Bias in Selection 

The method for selecting control stores based on 

matching test stores’ sales trends could introduce biases, as it 

may overlook other factors influencing sales that are not 

related to promotional activities. 

6.1.3. Impact Isolation 

The methodology must robustly isolate the impact of 

promotional activities from other variables that could affect 

sales, ensuring that the observed differences are truly 

attributable to the promotions. 

7. Open Research Problems  
Providing experiment owners with guided insights, 

moving beyond just the “what” to understanding the “why” of 

experiment outcomes.  

When A/B testing is not feasible, can quasi-experimental 

designs like propensity score matching be used to approximate 

control and treatment groups?  

To address the potential loopholes, it would be important 

to discuss how the methodology accounts for these factors and 

ensure that the results are robust, reliable, and applicable to 

broader retail operations.  

A methodology for selecting a control group under the 

first-order relaxation of homogeneity appears to be more 

complex. Developing a methodology according to this 

criterion may be explored. 

8. Conclusion  
The fundamental aim of this study was to underscore the 

importance of identifying homogenous units for control group 

selection to enable A/B testing. Two methodologies are 

proposed to address this problem, one using a statistical 

approach and the other using an optimization approach. The 

statistical methodology proposed highlighted the necessity of 

a substantial sample size to find a control group with low 𝑙1 

and  𝑙2 distances to the test group. However, the optimization 

approach demonstrated superior efficiency by quickly 

identifying a control group with minimal  𝑙1 distance, 

suggesting its effectiveness over traditional statistical 

sampling methods. Specifically, the optimization method 

yielded a control group with an  𝑙1 distance of 833, positioning 

it at the 0.05-percentile point of the  𝑙1 distribution, indicative 

of a highly homogenous group. Furthermore, this study 

illustrated the applicability of the methodology using a single 

KPI across a time frame, represented as a column vector. 

However, the approach’s versatility can be extended to multi-

dimensional KPIs, such as sales, volume, and margin, which 

can be analysed as a time-series size over a 3-dimensional 

vector to assess  𝑙1 and  𝑙2 distances. In conclusion, the 

operations research approach not only proved to be superior in 

identifying an optimally homogenous control group but also 

represents a novel contribution to the field of experimental 

design in retail analytics. This innovation lays the groundwork 

for more accurate and reliable experimental designs, thereby 

enhancing the capacity for data-driven decision-making in the 

retail industry.
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Appendix 

Simulation of KPI Data 
 In the model formulated for the problem (Section 4.1), the 

problem background is defined as follows. There are 𝑁 units. 

Each unit has KPI values for 𝑚 weeks. Consequently, each of 

the 𝑁 units is represented by an  𝑚-dimensional KPI vector. 

The simulation process is composed of two stages: (i) 

simulating the 𝑁 𝑚-dimensional vectors and (ii) selecting 𝑝 

test stores from the 𝑁 stores. The  𝑁 𝑚-dimensional vectors 

will be simulated from the distribution of an 𝑚-dimensional 

random vector 𝑥.  For simulation, 𝑥 is assumed to follow a 

multivariate normal distribution, with mean vector 𝜇 =
(μ1, μ2, … , μm) and covariance matrix Σ = (σ𝑖𝑗) serving as the 

parameters of 𝑥.  

 

 For clarity, units can be considered as stores belonging to 

a major business across the United States, where the KPI is the 

weekly sales of a particular product.  For simulation purposes, 

three types of stores are identified: Good (type 1), Moderate 

(type 2) and Dull (type 3). Each type is characterized 

mathematically by distinct sets of parameters 𝜇 and Σ  for the 

sales vector 𝑥.  Specifically,  (𝜇1, Σ1) represents Good stores, 

(𝜇2, Σ2) represents Moderate stores and  (𝜇3, Σ3) Represents 

Dull stores.  The mean vector  𝜇𝑘 is defined as 𝜇𝑗
𝑘 = 𝑎𝑘 +

𝑗𝑏𝑘 , 𝑗 = 1,2, … , 𝑚, 𝑘 = 1,2,3,  where 𝑎𝑘 represents average 

sales in the first week and 𝑏𝑘 indicates the growth rate.  

 

Store classification is based on the value of 𝑏𝑘. For the 

covariance matrix Σ, two scenarios are considered: (i) 

different Σ𝑘 for each store type, or (ii) a common Σ  for all 

types of stores. 

 

 Thus, there are three populations, one for each type of 

store, denoted as 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑘 , Σ𝑘), 𝑘 = 1,2,3.  Additionally, 

it is assumed that 100𝑞𝑘 Percent of the stores in the population 

belongs to type k, for 𝑘 = 1,2,3. The initial task involves 

simulating one 𝑚-dimensional sales vector for each of the 𝑁 

stores, resulting in a data matrix 𝐷 of order 𝑁 × 𝑚  whose. 𝑖𝑡ℎ 

a row represents the sales vector for store 𝑖.  

 The second task is to randomly select 𝑝 test stores through 

simple random sampling of 𝑝 integers from the set 

{1, 2, … , 𝑁} without replacement.  

Steps for simulating 𝑫: 

• Select the type 𝑘: This selection process involves 

choosing a type based on the probabilities 𝑞𝑘. 
• Generate a random number 𝑢 from 𝑈(0, 1). 

• Determine 𝑘: 

o If 𝑢 ≤ 𝑞1, assign k=1. 

o If  𝑞1 <  𝑢 ≤  𝑞1 + 𝑞2, assign k=2. 

o If 𝑞1 + 𝑞2 <  𝑢, assign k=3. 

• Sample from the Distribution: Draw a sample 𝒙 from the 

distribution 𝑛𝑜𝑟𝑚𝑎𝑙(𝝁𝒌, 𝚺𝒌) Corresponding to the 

selected type and append it to 𝑫. 

• Repeat the above steps 𝑁 times. 
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Simulation Instance 

 To derive the parameters for simulation, consider the data 

presented in the figure below. These values represent actual 

sales amounts (in dollars) for a specific medicine during two 

weeks in January. Due to a confidentiality agreement, the data 

source is withheld. Sales are promoted by 24 agents, as shown 

in the Figure. For this analysis, weekly sales will be simulated 

over 52 weeks.  

     Fig. Actual sales (in $) under 3 categories of agents 

 

 The data reveals that agents are grouped into 3 categories 

based on their performance. The growth rate for each category 

is calculated as the ratio of the average sales in the second 

week to the first week. Agents in Category 1 are classified as 

Good, with a growth rate of 𝑏1 = 3.54. Similarly, Category 2 

agents are considered Moderate, and Category 3 agents are 

Dull, with growth rates of 𝑏2 = 2.15 and  𝑏3 = 0.87 

respectively.  The mean vectors, 𝜇𝑘 are established using the 

first week’s average sales for each category: 𝑎1 = 24388 for 

Category 1, 𝑎2 = 33021 for Category 2, and 𝑎3 = 49828 for 

Category 3. How should Σ𝑘 be chosen?  For simplicity, 

assume constant variance across all weeks, meaning that 

𝑉𝑎𝑟(𝑥𝑗
𝑘) = 𝜎𝑗𝑗

𝑘 =  𝜎11
𝑘 =  𝜎𝑘  for 𝑗 = 1,2, … , 𝑚 (where 𝑚 =

51 for this paper). The covariance between 𝑥𝑔
𝑘 and 𝑥ℎ

𝑘, is given 

as 𝜎11
𝑘 𝜌𝑘

|𝑔−ℎ|
, where 𝑔, ℎ ∈ {1, . . , 𝑚} and 𝜌𝑘 = 𝑐𝑜𝑟𝑟(𝑥1

𝑘, 𝑥2
𝑘 ), 

which simplifies the assumptions further. Using these 

assumptions, the structure of Σ𝑘 is   

 

 In this instance, 𝜌𝑘 is taken as the correlation between first 

and second week sales within the respective category. Based 

on the data, the variances are: 

 

                𝜎1 = 17532, 𝜎2 = 32012, 𝜎3 = 60112,   
 

The correlations are:  

                 𝜌1 = 0.79,     𝜌2 = 0.94 and 𝜌3 = 0.73. 

  
Summarizing, the (𝑔, ℎ) element of Σ𝑘 is given by: 

              

                      𝜎𝑔ℎ
𝑘 =  𝜎11

𝑘 𝜌𝑘
|𝑔−ℎ|

, 𝑔, ℎ ∈ {1,2, … , 𝑚}. 

 

A Python was developed to implement this procedure. 

Sales data for 100 stores were simulated using probabilities of 

𝑞1 = 0.3, 𝑞2 = 0.5 and 𝑞3 = 0.2. For clarity and due to space 

constraints, only the first quarter’s (12 weeks) sales data are 

presented in the figure below. The first column identifies the 

store type. Once the sales data are simulated for the 𝑁 units, 𝑝 

units can be selected as the test group, and the remaining units 

can be considered as the potential control group. 

 

 
Fig. Simulated sales of the first 12 weeks 

 

Simulation with Common Covariance Matrix 

In the approach outlined above, three different covariance 

matrices were used. If a common covariance matrix is 

required, the shared Σ should be calculated as the average of 

the three Σ𝑘 Matrices

 

Listing 1: Sample Python Code for Generating Data 
# Required Python infrastructure 
# This code uses the 'numpy' library for numerical computations. 
# To install it, use: pip install numpy 
 
import numpy as np 
 
# Function to set the parameters for the multivariate normal distribution 
# based on the type of store: good, moderate, or dull. 
def set_parameters(k_value): 
    """ 
    Set parameters based on the type of store. 
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    Parameters: 
    k_value (int): A numeric value representing the store type. 
                   1: Good stores 
                   2: Moderate stores 
                   3: Dull stores 
 
    Returns: 
    tuple: a, b, s (variance), and r (correlation coefficient). 
    """ 
 
    if k_value == 1:  # Good stores 
        a = 24388      # E(x_1), initial sales 
        b = 3.54       # Incremental increase per period 
        s = 7010**2    # Variance of sales 
        r = 0.79       # Correlation coefficient between periods 
 
    elif k_value == 2:  # Moderate stores 
        a = 33021      # E(x_1), initial sales 
        b = 2.15       # Incremental increase per period 
        s = 12804**2   # Variance of sales 
        r = 0.94       # Correlation coefficient between periods 
 
    else:  # k_value == 3 (Dull stores) 
        a = 49828      # E(x_1), initial sales 
        b = 0.87       # Incremental increase per period 
        s = 24044**2   # Variance of sales 
        r = 0.73       # Correlation coefficient between periods 
 
    return a, b, s, r 
 
# Example usage: 
# good_store_params = set_parameters(1) 
# moderate_store_params = set_parameters(2) 
# dull_store_params = set_parameters(3) 
 

# Required Python infrastructure 
# This function uses the 'scipy' library for multivariate normal distribution. 
# To install it, use: pip install scipy 
 
from scipy.stats import multivariate_normal 
import numpy as np 
 
# Function to generate a single sample from a multivariate normal distribution. 
def generate_multivariate_normal_samples(m, a, b, s, r): 
    """ 
    Generate a single sample from a multivariate normal distribution. 
 
    Parameters: 
    m (int): The number of time periods, 51 in the paper. 
    a (float): The initial sales value. 
    b (float): The incremental change per variable. 
    s (float): Variance of the variables. 
    r (float): Correlation coefficient between variables. 
 
    Returns: 
    np.ndarray: A single sample from the multivariate normal distribution. 
    """ 
    # Create the mean vector with an incrementing pattern based on 'a' and 'b' 
    mean_vector = np.array([a + (j - 1) * b for j in range(1, m + 1)]) 
 
    # Construct the covariance matrix using the given variance 's' and correlation 'r' 
    covariance_matrix = np.array([[s * r**abs(i - j) for j in range(1, m + 1)] for i in range(1, m + 1)]) 
 
    # Create a multivariate normal distribution object with the calculated mean and covariance 
    mvn = multivariate_normal(mean=mean_vector, cov=covariance_matrix) 
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    # Generate a single sample from the multivariate normal distribution 
    sample = mvn.rvs(size=1) 
 
    return sample 
 
# Example usage: 
# sample_data = generate_multivariate_normal_samples(5, 24388, 3.54, 7010**2, 0.79) 
 

# Required Python infrastructure 
# This code requires the 'pandas' library for DataFrame manipulation. 
# To install it, use: pip install pandas 
 
import pandas as pd 
import numpy as np 
 
# Number of weeks (columns for the sample data) 
m = 12 
 
# Initialize an empty DataFrame with columns representing store type and weeks 
columns = list(range(m + 1)) 
df = pd.DataFrame(columns=columns) 
 
# Rename columns for clarity: 'Type' for store type, and 'Week1', 'Week2', etc., for weekly data 
new_columns = {0: 'Type'} 
for i in range(1, m + 1): 
    new_columns[i] = f'Week{i}' 
df = df.rename(columns=new_columns) 
 
# Example usage: 
# Define store types and their respective probabilities for random selection 
k_values = [1, 2, 3]  # 1: Good, 2: Moderate, 3: Dull 
probabilities = [0.3, 0.5, 0.2]  # Probability distribution among the store types 
 
# Number of stores to generate data for 
num_stores = 100 
 
# Generate store sales data using the `set_parameters` and `generate_multivariate_normal_samples` functions 
for i in range(num_stores): 
    # Randomly select a store type based on the defined probabilities 
    k = np.random.choice(k_values, p=probabilities) 
     
    # Retrieve parameters based on the selected store type 
    a, b, s, r = set_parameters(k) 
     
    # Generate a single sample of weekly sales data 
    y = generate_multivariate_normal_samples(m, a, b, s, r) 
     
    # Insert the store type as the first column 
    y = np.insert(y, 0, k) 
     
    # Convert the generated data to a DataFrame and rename columns accordingly 
    y_df = pd.DataFrame(y.reshape(1, -1), columns=new_columns) 
     
    # Append the new row of store data to the main DataFrame 
    df = pd.concat([df, y_df], ignore_index=True) 
 
# Round the values to the nearest integer for clarity 
df = df.round(0) 
 
# The DataFrame 'df' now contains the generated data for the specified number of stores 


